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1. Let us consider plane-parallel potential motions of a heavy liquid of 

infinite depth which are generated by the action of a source with constant 

intensity, which Is placed under the surface of the liquid. The surface of 

the liquid being horizontal In the absence of an acting source, will become 

wavy In the presence of the source. We have In mind to determine the form 

of these waves, not assuming that they are Infinitely small, but still sup- 

posing that they are sufficiently small. 

y'* 

We shall assume that the motion of 

c 3 

ww 

the llquld takes place In the vertical 

y=o - 
plane x, 0, y ; the origin of the 

y=O coordinates will be taken at the source, 

w=o 
0' 

* the y-axis will be directed vertically 

+ upward; let A designate the point on 

y'-j4 $#_f$ the liquid surface located on the P-axis, 

n, D, 
and let B and C designate points on 

the liquid surface which have an lnfi- 
Fig. 1 nite distance to A . Let us cut the 

flow plane along the y-axis from the point 0 to the point y = - 0~ and 

let us designate by D, and pa points which are located at Infinity on two 

sides of the cut (Flg.1). 

The flow line which originates at point 0 and which Is directed along 

the v-axis from the source to point A , Is symmetrically divided at this 

point into two sections, AR and AC . Now assign to this flow line a zero 

value as a function of the flow $ and assume also that at the point A 

the velocity potential cp is equal to zero. !l!he line of the flow which Is 

dlrecred vertically downward from point 0 along the cut has two values In 

Its flow function; along the left-hand side of the cut OD, we have 

$ - - *q , and along the right-hand side of the cut 00, we have 1 I +q . 
Here q designates the rate of discharge of the source. 
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tit us map the entire flow region BACD,UD& located on the plane of 
the complex variable .s I x + 6~ onto the plane m - cp + t$ . In this lat- 
ter plane we will have a strip of width p , symmetrloally located with 
rsPect to the ~-axis, and possessing a cut BAC which passes along the nega- 
tive part of this axis (Fig.2). The corresponding points on the planes I 
and m wZl1 be designated by the same letters. 

The function which establishes the correspondence between Pigs. 1 and 2 
is, of course, unknown. Therefore the problem at hand will consist in deter- 
mining this function. 

Let us map the plane of the complex variable w Into the plane of the 

auxiliary variable 6 , assuming that 

Y dw 1 -- 
Cl-11 

n2 
B 

fq WI 

~ 

0 x== 2)+ 

A 0 
On the plane of the variable C we will have a 

c y” vertical semistrip as shown in Pig .3. Finally, we 

0 
transform this semistrip on tk plane of the primary 

auxiliary variable u , assuming that u = e-9. 

In the plane of the variable u we will have, 

as the reglon common to the entire flow along the 

s-plane, a circle with a radius equal to unity 

and a cut along the straight line (U -- 1, U- 0) 

5 (Fig.4). The corresponding points of the Plan- 

t, 10, u are designated by the same letters. In 

passing from the variables 6 to the variable u> 

Formula (1.1) Is replaced by the following: 

Fig. 3 dw ----=- q l-u __- 
du 2nu 1$-u (1.2) 

Now let us establish the connection between 

the complex variables I and u . 

A If on the plane z there was no source , then 

the correspondence between planes I and C 

would be expressed by Formula 

Fig. 4 
because in the 

BAC would be a horizontal line; i Isa 

distance OA - When changing to u , the 

dz - it 

absence of the source the line 

certain constant related to the 

last formula becomes 

.i 

du=- zzi_ 

dz 1 1 

Assume that in the presence of the source the connection between the 

planes 8 and u is expressed by Formula 

dz il 1 1 -=-q- 
du 2n (u + Q2 f @I 

(l-3) 
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where y(u) is an unla~own function, holomorphlc inside the circle lul = 1. 

Let us expand this function following the MacLaurln's theorem as follows: 

f (u) = 1 + b,u + b,u2 + . . . (1.4) 

The problem at hand Is to determine this function. 

2. In order to find the function ,f(u) let us set up the equation which 

would transfer the constant pressure condition along the free surface FAC 

for the fluid. On the basis of the Bernoulli Integral this condition will 

be expressed Vz + 2gy = const (2.1) 
Here V Is the particle velocity on the free fluid surface at point 

having an ordinate g . 

According to Formulas of the preceding section we will determine the 

quantities V and y . We have 

dW 
-= 
dz 

Let us apply this formula to the points located on the fluid surface 

where u = @, then we will have 

dw ig (e-iB ;i;; 
dz= 1 

--eie) f (eie), dz = _ +[(eie _ e-i9) f (eif3) 

Multiply termwlse these equations, we have 

Va = 2qaP (1 - ~0s $3) f (eie) f (2.2) 

From Formula (1.3) we will have 

da 1 1 i Z 1 1 j x= -- 4% - 1 
+ 

CO8 0 f ’ XT= -- 4n 1 
+cose* 

(2.3) 

We then have 

dx 1 1 -=- - 
d0 Sax i + cos 0 

I i 1 
fo-=- 

f We) 
From Formulas (2.3) it Is easy to see that the symmetrical property of . 

the fluid surface relative to the OY-axis has as a consequence the following 

property of the function I(U) : 

f (eie) = f (e-ie) 
From here it follows that all the coefficients In the expansion (1.4) are 

indeed real numbers. Now we can rewrite Formulas (2.2) and (2.3) so that 

Va -coS2e)f(eie8)f(e-fe), $ = - 831 +;ose{+&} 
Differentiate now the basic equation (2.1) with respect to the variable 

0 and write the result using the preceding formulas. We will then have 

8 & [( 1 - co9 28) f (eie) f (e-‘“) I - 1 + ‘,,, o f {-& - -L} = 0 
f We) 

( 8 - 4nqa 
&P 1 (2.4) 
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This is the basic equation for the problem under consideration; taking 
advantage of this equation we can find the coefficient of the expanslon(1.4). 

3. Proceeding to solve Equation (2.4),first let us Indicate certain 
auxlllary formulas. We have 

f (e”‘) = 1 + b# + bzeBie + bSe3i0 + . . ., f (eeie) = 1 + bledi* + &.e-2ie + bse-3ie + . . . 

From here we obtain 

f (eie) f (@) = ‘Id30 + BI cos 0 + Bs cos 213 + BB cos 30 + . . . 

where Bo, B,, B,, Ba, . . . are defined with Formulas 

‘laB, = 1 + b12 C baa + b$ + b4af . . . V& = b, f b,b, f b,b, + b,b, f . . . 
‘IaB, = b, -I- b,b, -> b,b, +- b,b, + . . . ‘l$, = b, -k b,b, f b,b,, -I- b,b, -4 . . . 
VaB, = b, -I- b,b, f b,b, -j- b,b, f . . . and so forth (3.1) 

Further we have 

$ [(I - Cos 26) f (eie) f (eyie)] = - (Bl - 1/Z BI - l/Z B3) sin 0 + 

-2(Bz--‘/zBo- l/a B4) sin 20 - 3 (Bs - ‘1% BI - l/S BS) sin 30 - 
-4(B~--‘laBz--‘/aBa)sin40-5(Bg-~/aB.7 -l/aB,)sin50--. . . 

Using this for&a we obtain 

(1 + cos 0) -$ [(I - cos 20) f (eie) f (eeie)] = 

=(‘/a BI + ‘/a Bo - Br - Ba + l/z Bs + l/a Ba) sin O+ 

+ (l/4 B1 + BO + I/4 BI - 2Br - 6J4 Ba + B4 + 9/4 Bs) sin 20 t 
+ (l/a Bc, + 3/a BI - 3Bs - sJa B4 + % Bg + Be) sin 38 + 

-I- (% BE + 2Ba - ‘14 Bs- 484 - ?/a BS + 2Be + =Ja Bv) sin 40 -I- 
+(Bz+6/aBs-1’/aB~+5B~-2B~+5/,B,+3/aBs)sin58+. . . 

Then we set 

(3.2) 

1 / f (u) = 1 + ClU + c& + c,u8 + . . . (3.3) 

Coefficients of this expansion are connected with the coefficients of 
Equation (1.4), as follows: 

b1 + c, = 0, b, + clb, + csb, + cI = 0, b, + %b, + czb, + cjb, + ~4 = 0 

b, + CA + ca = 0, b,+c,b,+c,b,+c,b,+c,b,+c,=O e:c. (3.4) 

We have 

(3.5) 

4. We substitute the expansions (3.2) and (3.9& ~&~g;t~-na(~;~~;l 
Ewting the coefficients of the sines of dlfferen 
arc, we will have 

cl = e [‘/a BI + ‘/a Bo - BI - Ba + ‘18 Bs + ‘lz B41 

cz = e [l/4 BI + Bo + l/a Bl - 2Ba - 5/4 B3 + Ba + 3/4 Bsl 

c.2 = (5 [‘/a Bo + s/e Bl - 3Bs - %Ba + 3/aB5 + Bal 

4 = e [314 B1 + 2Bz - ‘/4B3 - 4B4 - ‘/4& + 2Bo -i_ VrB7j (4.1) 

cy, = e [Ba + 5;2B3 - lj~B4 - 5B5 - 2Bo + 5,‘zB7 + 3/aBa: 

. . . . . . . . . . . . . . . . . . . . . . . . . . 
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Supplementing this system by Equations (3.4), we ten find the un?znown 

coefficients b,, b,, b,, b,, . . ., cl, c2, cs, ~4, . . . We will look for these coeffi- 
cients In terms of series 

bl = e (ho + he + haea + . . .), 
b3 = e (b30 + bale + b3ae2 + . . .), 

cl = e(c10 + me + Ciaea + . . .), 

c3 := e (CSO + me + cm32 + . . .), 

bz = e (baa + bale + bsaea + . . .) 
b4 = e (b40 + bale + b4ae2 + . . .) and So forth 

Ca = e (cao + tale + caae2 + . . .) 
c4 = e(~4~ + C41E + c42ea + . . .) and so forth 

The substitution of these series Into Equations (3.4) and (4.1) allows us 
to find their unknown coefficients. By equating these coefficients of varl- 
ous powers of c on both sides of the given equations, we have the following 
results : 

Cl0 = 1, Cl1 = 4, C50 = 0, c71 = 0, Cla = 32, c6a = - 163, cga = 14 
Cao = 2, Czi = lD/a, &IO = 0, CEl = 0, Caa = 79, C62 = 31, Cl02 = 0 

QO = 1, C3I = 3, c51 = - 9, CPl = 0, c32 = - 4, C7a = 129 
ccl0 = 0, c41 = - 9, C.51 = - 5Ja, C42 = - 182, C3a = 147/a 

Thus, we Can sequentially write the expansion of the function l/y(u) 
according to the powers of u , accounting for all the terms up to the third 
order of smallness of the parameterlc value E 

1 / f (u) = 1 + e (1 + 4e + 32s2 + . . .) u + e (2 + lD/# + 79e2 + . . .) ua + 
+ e (I+ 3e - 4ea + . . .) u8 + e (- 9e - 182ea + . . .) u4 -I- (4.2) 

-/- e (- 9E - 169ea + . . .) u6 + e (-6/ae + 31ea + . . .) ue + 
+ e (i29ea + . . .) u7 + e (147/ae2 + . . .) uB + e (14P? -t . . .) ug + . . . 

5. Substitution of series (4.2) Into Formula (1.3) gives the following 
result: 

2n dz I- l/ae2 -- 
il du 

+(-ha-- 68eS) d + (- 6/a 82 - ‘@/.a es) u4 + 24fPu5 + gl@V + 14eW] 

From here we have with accuracy to the third order in g 

I- 
- + + (i ; ‘/sE*) + l/aF?U + 

+ l/a (8 + 4ea + 3leS) ue + l/e (es + lie*) ue - (~a + 17eS) 144 - 

- l/o (19 + wEa) ub + 4saua + n/re9u1 + ‘/4esUe + . . . ] 

By assuming u = eie and separating the Imaginary part from the real one, 
we find a parameterlc equation for the surface of the liquid. 

2nzll = - l/a (1 - l/z&*) tmlja0 - l/s* sin 6 - l/a (e + 4ea + 31ea) sin 26 - 
-‘/a (es + lies) sin 36 + (Ea + i7e3) sin 46 + l/e (ea + 25~~) sin 56 - 4~s sin 66 - 

- ls/aea sin 78 - ?/de3 sin 86 + . . . 
2Ilyll= ‘/a (1 - ‘/&) + ‘/se3 COs 6 f ‘/a (s + 4s’ $ 3is*) CO6 28 f ‘ia (E” + lie’) COS 36 

- (e” + 178’) cos 46 - '/a (e2 + 25es) cos 56 + 4sa cos 66 + laja e9 cos 70 +‘I4 es cos 80+. . . 

We set ln the second equation g I n ; for this value of 0 the ordinate 
k will be equal to the height of the liquid surface above Its level at infl- 
nlty, or, as can be also said, the depth h of the submerged source, we have 

2nh / 1 = ‘/a (1 + e + 3/da + n/lea $ . . .) 

From this formula with the aid of a specified value for h , we find the 
auxiliary parameter t which Is contained in the surface equation. 

By assuming that 0 - 0, we can find the ordinate for the surface above 
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the source. Calculations show that this ordinate will be equal to h , 
8s it should be. 

6. We return to Eqlation (2.4) and transform It by introducing instead 

of function Y(U) the function 

w=-x+i6 

where 6 is the angle of inclination of the velocity to the OX-axis and T 

is defined as 

In carrying out 

between T and 6 
appropriate calculations , we can find the relation 

on the circumference 1~1 - 1 

dz 1 -- 
dt) 

w--8 e3rain6 = 0 
2 

This 

include 

f P”) 

condition resembles the Levi-Clvlta condltlon, but it does not 

any type of parameter. According to the function u) the fW&%On 

is determined as 

This function will be a particular form of the general formula 

(6.1) 

(6.2) 

The function W(U) can be determined by using the boundary condition (6.1) 

in the form of a series of powers of parameter E introduced above and then 

by uslng Formula (6.2) we can again arrive at series (4.2). 

Translated by V.M.G. 


