FORMATION OF WAVES OF FINITE
AMPLITUDE BY A FLUID SOURCE

(OBRAZOVANIE VOLN XOMBOENOI AMPLITUDY ISTOOHNIKOM ZHIDKOSTI)

PMM Vol.29, W 4, 1965, pp. 667-6T1

L.N.SRETENSKII
(Moscow)

(Received April 5, 1965)

1. Let us consider plane-parallel potential motions of a heavy liquid of
infinite depth which are generated by the action of a source with constant
intensity, which 1s placed under the surface of the liquid. The surface of
the 1liquid being horizontal in the absence of an acting source, will become
wavy in the presence of the source. We have in mind to determine the form
of these waves, not assuming that they are 1nr1nite1y small, but still sup-
posing that they are sufficiently small.

We shall assume that the motlion of

C J A J ‘the liquid takes place in the vertical
‘~\\\___,//::'_4%;ZET:\\\~_,,/” plane x, 0, y ; the origin of the
w=0 w=0 coordinates will be taken at the source,
P w=0 z the y-axis will be directed vertically
upward; let 4 designate the point on
’U=-2_’q w= z’/‘l the liquid surface located on the y-axis,
z 15 and let p and ¢ designate points on

the liquid surface which have an infi-
nite distance to 4 . Let us cut the
flow plane along the y-axis from the point ¢ to the point y = — = and
let us designate by D, and D, proints which are located at infinity on two
sides of the cut (Fig.l).

Flg. 1

The flow line which originates at point (¢ and which is directed along
the y-axis from the source to point 4 , i1s symmetrically divided at this
point into two sections, 45 and AC . Now assign to this flow line a zero
value as a function of the flow § and assume also that at the point 4
the veloclty potential ¢ 1s equal to zero. The line of the flow which is
direcred vertlically downward from point ¢ along the cut has two values in
its flow function; along the left-hand side of the cut 0D, we have
¥ = — % , and along the right-hand side of the cut 0D, we have y = g
Here ¢ designates the rate of discharge of the source.

795



796 L.N.8retenskil

Let us map the entire flow region BACD,0OD,B 1located on the plane of
the complex variable 2 = x + ty onto the plane p = o + 1% . In this lat-
ter plane we will have a strip of width ¢ , symmetrically located with
rspect to the p-axis, and possessing a cut BAC which passes along the nega-
tive part of thisaxis (Pig.2). The corresponding points on the planes gz
and yp will be designated by the same letters.

The function which establishes the correspondence between Figs. 1 and 2

is, of course, unknown. Therefore the problem at hand will consist in deter-
mining this function.

Let us map the plane of the complex variable w into the plane of the
auxiliary varliable ( , assuming that
W LA S
ET T wm Tt (1.9

On the plane of the variable { we will have a
vertical semistrip as shown in Fig.3. FPFinally, we
transform this semistrip on the plane of the primary
z -l auxiliary variable u , assuming that u = ¢ %%,

,\
S B

In the plane of the variable u we will have,
as the region common to the entire flow along the
V4 z-plane, a circle wlth a radlus equal to unity
I V4 and a cut along the straight line (u=-—1, u=0)
{Fig.4). The corresponding points of the planes
(3) zs w, u are designated by the same letters, 1In
passing from the variables { to the variable u,
Formula (1.1) is replaced by the following:

Fig. 3 dw g 1—u (1.2)

Now let us establish the connection between
the complex variables  and u .

If on the plane 2z there was no source , then
the correspondence between planes z and ¢
would be expressed by Formula

dz { 1
a T B cos g
because in the absence of the source the line
BAC would be a horizontal line; 1 1s a certain constant related to the
distance 04 . When changing to u , the last formula becomes
dz jﬁ_ i
du - Zm (u 310

Assume that in the presence of the source the connection between the

planes » and u 1s expressed by Formula

= __ il 1 1 (1.3)
T R U )

O o

Fig. &
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where r(u) 1s an unknown function, holomorphic inside the circle |u| = 1.
Let us expand thls function following the Maclaurin's theorem as follows:

Fu =14 bu+bu?+ ... (1.4)

The problem at hand 1s to determine this function.

2. In order to find the function #(u) let us set up the equation which
would transfer the constant pressure condition along the free surface PRAC
for the fluid. On the basls of the Bernoulli integral this condition will

be expressed V2 4 2gy = const (2.1)

Here V 1s the particle velocity on the free fluld surface at point
having an ordinate y .

According to Formulas of the preceding section we will determine the
quantities V and y . We have

dw ig 1 —u?
== 1 /@

Let us apply this formula to the polnts located on the fluid surface
where p = ¢!, then we will have

dw iqg , i i d 1 i oy T
& =T P—fE),  G=— T —e®) [
Multiply termwlse these equations, we have
V2 = 22072 (1 — cos 20) f (¢i®) 7 () (2.2)
From Formula (1.3) we will have
L S S S e _ 11t 1 (23
40 —  dm {4 cosb f(.0)’ dO__Hl—-]-cosOmT)'
We then have
de _ 1 1 1 1 day _ 1 1 i 1
do §Fi+cose{f(,i°) f(eiﬂ)}’ do 8ni1+cose{f(ei9) f(T"U}

From Formulas (2.3) it is easy to see that the symmetrical property of
the fluld surface relative to the (F-axis has as a consequence the following
property of the function p(u) :
f (€%) = f(e™)
From here 1t follows that all the coefficients in the expansion (1.4) are
indeed real numbers. Now we can rewrite Formulas (2.2) and (2.3) so that

242 d; i 1 i
V2= (1 —cos20) f(e®) f (e ), L = — — —
oo, G = — a7 — 70

Differentiate now the basic equation (2.1) with respect to the variable
6 and write the result using the preceding formulas., We will then have

d S 1 1 1
€ a9 [(1 cosZO)f(e“’)f(e i9)] 1 + cosﬁ_ﬁ—i‘{j(e“’) - f(e'io)} = 0

(8 = %‘f—z) (2.4)
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This 1s the basic equation for the problem under consideration; taking
advantage of this equation we can find the coefficient of the expansion (1.4).

3. Proceeding to solve Equation (2.%), first let us indicate certain
auxiliary formulas. We have

P =1 4 bie®® £ 5™ L boe®™ 1L F(E) =1 b o bge O b
From here we obtailn
F (&) F(e7%®) =12By + By c0s 0 + Ba cos 20 - Bycos 30 +- . . .
where B, By, B,, B,,.., are defined with Formulas

YyBy =1+ b2+ b2 + b3 b ...  Y,B, = b, + byby + byb, + bgbs + - . .
1,B, = by -+ byby > byby + bgb + . . . Y4By = by 4 byb, + byby + bybg + . - .
Y,By = by - bybs 4 bebg + bgby + . . . and so forth 3.1)

Further we have

d . )
=g [(1 —cos26) f (€%) 1 (¢7*)] = — (B1 — Y2 By — /2 Bs) sin 0 -

—2 (Bz _ 1/2 By — 1/2 B4) sin 20 — 3 (Bs —_ 1/2 B, — 1/2 Bs) sin 30 —
—4(3‘-—1/2 B2 ——l/zBa) sin406 —5 (Bs —1/2 Bs —1/237) sin 50 — . ..

Using this formula we obtaln

(1 -+ cos 6) 5 [(1 — cos 26) £ (¢) (%)) =

=(!/2 B1 + /2 Bo — By — By -+ /2 Bs + /3 By) sin 6}
+ (*/s Bi + Bo + Ya By — 2Bas — 5/a By 4 By + %/a Bs) sin 20 {
+ (12 Bo + 3/2 By — 3Bs — 8/a By -+ 3/2 Bs + By) 5in 30
- (8/4 By 4 2Bz — /s By— 4By — /s Bs + 2Bg - 5/4 By) sin 40 +
+ (B2 + %2 By — /3 B + 5B5s — 2Bg + %/3 B; 1- 3/3 Bg) sin 50 + . . . 3.2)
Then we set

1/f@ =14 cu+t cu? -+ eq® 4 . .. (3.3)

Coefficients of this expansion are connected with the coefficients of
Equation (1.4), as follows:

by+ ¢ =0, by c1by + ey -+ ¢g = 0, by -+ e1bg + by + by ¢ = 0
by + ¢1by + ¢, = 0, by + c1by - cabg + e4by + by + 5 = 0 esc. (3.4)
We have
-ii—l:—l(iTw)-—-f—(:__—TsJ =¢;5in 0 -+ c28in 20 -}- c35in 30 + . . . (3.5)

. bstitute the expensions (3.2) and (3.3) into Equation (2.14).
Equ:tngetts:: :oerficients Jc:lf) the sings of differen): multiples of a glven
arc, we will have

e1==¢8[YaB1+4 32 Bo— B1— Ba 413 Bs 4 1/2 B,)

c2 =g [Ya By -~ Bo - /s By — 2Ba — %/4 B3 + Ba + 34 Bs)

¢2 = ¢ (Y2 By + 3/2 By — 3Bs — 3/aBy + 3/aB5 + Bs)

cs =¢ [3/s By + 2By — /4By — 4By — "/4Bs -+ 2B -+ 5/aB4] (41)
¢5 = & [ By -+ 5j2B3 — 1/2By — 5Bs — 2B -+ %/2B7 -+ 3/aBs]

..........................
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Supplementing this system by Equations {3.4), we can find the unknown
coefficients by, by, by, by, - -+, €1, Cay €3y Cgs -+ - We will look for these coeffi~
cients in terms of serles

by = e (bo 4 bue + e .. .), by = & (bao + bzie - bese? - . . .)

bs = & (bso -+ be + bsse? + . . .), by = & (bao + bare + buse? + . . ) 804 so forth
¢1=¢ (cio + cu€ + 128 4 . . ), o3 = € (cg0 + cate -+ cooe® + .. .)
3= & (C30 - a8 - caa82 + . . 1), cg = € (ca0 + Ca18 -+ ca2e? + . ..) &nd so forth

The substitution of these series into Equations (3.4) and (4.1) allows us
to find their unknown cdefficients. By equating these coefficients of vari-
ous powers of e on both sides of the given equations, we have the following
results:

cao=1, cu=4, ¢s0 = 0, cn=0, ¢2=32, s =—163, cp2 =14
cao=2, cg =105 g =0, 1 =0, c2=79, cgz — 34, croz =0
co=1, ¢y =23, 1=—9, =0, w=—4 c=129

c0=0, ca=—9, ca=—3"p, caz = — 182, gy = 147/,

Thus, we can sequentially write the expansion of the function 1/r(u)
according to the powers of u , accounting for all the terms up to the third
order of smallness of the parameteric value ¢ .

1/f(w=1-+ec(d+4e+3224..)u-+ (@4 ¥e+ 7%+ ...)u+

+e(d 43 —4e?+..)ud+ e{— 9 — 182 4 . ..) ut + (4.2)
+e(— 92 — 1692 4 .. .) ud + & (—P/pe + 3fe2 .. .) ub +
+ e (129 + .. ) u e (Wt + .. DubFe(de2 L )W+,

5. Substitufion of series (4.2) into Formula (1.3) gilves the following

result:

2n d 1 —1/3e2 1
Bt = Tt O l(e -+ bt 319 u + Caed £ ) u3 4

+ (— 4e? — 68¢3) uB |~ (— /382 — 135/’ £3) ut - 2485ud |- "/ae3u8 L 14e3u7)
From here we have with accuracy to the third order in ¢

uw
il ¢ 1 du il i —1/p02
F= TR AT T o T O e e
0
+ Y2 (e -} 4e? + 34e3) u + /3 (e2 4 11€3) u® — (e3 |- 1763) ut —
— /g (€2 - 25¢%) ub 4g3u® |- 18/83y7 |- &3ud .. .]
By assuming u = et and separating the imaginary part from the real one,

we find a parameteric equation for the surface of the liquid.

2nz [ 1= —1/3(1 — 1/33) tan1/20 — 1/383 5in 6 — V3 (& -+ 4e2 |- 31e3) sin 26 —
—1/3 (e? + 14¢%) sin 30 - (2 + 17e3) sin 40 + 1/3 (e - 25¢®) sin 50 — 4e? sin 60 —
— 18/53 8in 70 — 7/4e35in 80 - . . .
2my/l =13 (1 — Y/3e%) 4 Y/32® c08 0 + /3 (e + 4e? + 31e?) cos 20 + /3 (e2 < 11¢3) cos 30—
— (8% + 17e%) cos 40 — /5 (€? |- 25€®) cos 50 - 4e® cos 6§ |- 13/; €% cos 70 +-7/s €3 cos 80+ ..

We set in the second equation 6§ = 7 ; for this value of 6 the ordinate
y Will be equal to the height of the liquid surface above its level at infi-
nity, or, as can be also sald, the depth A of the submerged source, we have
20th |1 =1)s (1 + & + 3ae2 + 1733 + .. )
From this formula with the aid of a specified value for » , we find the
auxiliary parameter 1 which is contained in the surface equation,
By assuming that 6§ = O, we can find the ordinate for the surface above
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the source. Calculations show that this ordinate will be equal to » ,
as it should be.

6. We return to Eqlation (2.4) and transform it by introducing instead
of funetion f(u) the function

@ =T -+ i?
where ¢ 1s the angle of inclination of the velocity to the oOy-axis and r

is defined as
. /g9 31 dz !
v=In| ()" o |]

2m
In carrying out appropriate calculations, we can find the relation
between  and & on the circumference |u| = 1

dt i .
P e 3T —
5 — w0 esind =0 (6.1)

This condition resembles the Levi-Civita condition, but 1t does not
include any type of parameter., According to the funection o the function
f(¢®) 1s determined as

; L [gg\" e
F5: 2 WA B -2
1Hef)=—; (2n> Sin 0
This function will be a particular form of the general formula
il gqN\Ns N ,
)= (é&‘) T—w® (6.2)

The tunction w(y) can be determined by using the boundary condition {(6.1)
in the form of a seriles of powers of parameter ¢ introduced above and then
by using Formula (6.2) we can again arrive at series (4.2).

Translated by V.M.G.



